Project Details

<table>
<thead>
<tr>
<th>Project Code</th>
<th>MRC21IIRBa Laabei</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Escaping host immunity: Defining Staphylococcus aureus complement evasion mechanisms</td>
</tr>
<tr>
<td>Research Theme</td>
<td>Infection, Immunity & Repair</td>
</tr>
<tr>
<td>Summary</td>
<td>Complement plays a major role in defence against infection. How major human pathogens such as Staphylococcus aureus resists this element of host immunity is currently unclear. By employing phenotypic, transcriptomic and functional genomic techniques, this project will reveal important virulence factors and underlying gene regulatory networks that promote resistance to complement, offering new targets for future therapeutic intervention.</td>
</tr>
</tbody>
</table>
| **Description** | Background: Staphylococcus aureus is a major human pathogen that causes a broad range of infections resulting in significant morbidity and mortality globally. Due to the constant threat of antimicrobial resistance, the WHO has placed S aureus on the list of priority pathogens for which the development of antibiotics and novel immunotherapeutics is urgently required. To effectively develop anti-infective therapies to combat S aureus infection, a greater understanding of the virulence mechanisms promoting disease is required. All successful pathogens have evolved mechanisms to resist host immunity which are intimately aligned with their pathogenicity. Importantly, the primary host response to S aureus occurs via complement. Complement is an elegant evolutionarily conserved system, playing essential roles in early defences by working in concert with immune cells to survey, label and destroy microbial intruders and coordinate inflammation. Dissecting how this bacterial pathogen escapes complement detection is the overall goal of this project.

Aims and overview: This project will employ gold-standard molecular biology tools and multi-omic approaches to determine both the essential mechanisms of complement resistance and the genetic regulatory elements that underpin their expression. In tandem, by combining genomic, phenotypic and previously collected clinical data this study will develop machine learning frameworks to discover associations between the immune evasiveness of clinical isolates and their ability to cause severe infection. Previous work indicates that S aureus is a master of complement evasion. Based on antibody responses to S aureus infection, we hypothesize that there is a hierarchy of effective complement strategies where evasins are expressed in response to local environmental cues.

Objective 1: To test this hypothesis, we will examine the individual role of cell wall anchored proteins and assess their contribution to protection against complement under different environmental conditions aimed at mimicking in vivo infection. Here the student will create isogenic mutants of key cell wall proteins and develop a novel complement deposition assay providing a high-throughput readout for complement evasion. How immune evasion molecules are regulated both under lab conditions and those mimicking in vivo infections remains a mystery and will be explored in this objective. We hypothesis that increasing exposure to serum components and limitation of important nutrients triggers an upregulation of evasive mechanisms that occurs via global virulence regulatory systems.

Objective 2: Here we will use cutting-edge
transcriptomic analysis by employing high resolution RNA sequencing to determine differential gene expression under lab and in vivo like conditions. These environmental specific global gene expression profiles will be used to reveal the regulatory framework responsible for complement resistance in S. aureus. Lastly, we will examine complement evasion in a cohort of clinically relevant, genetically diverse genome sequenced S. aureus isolates. Objective 3 will employ a functional genomics approach, combining genotype and phenotype, enabling genome-wide association studies (GWAS) to identify genetic signatures associated with increased or decreased immune evasiveness. These signatures will be further tested and functionally confirmed in the lab, revealing novel genes and/or mutations associated with complement evasion. Using this data, we will employ machine learning and statistical analysis to predict the immune evasiveness of an isolate directly from the bacterial genome sequence, an important step towards understanding pathogenicity and improving disease management.

Supervisory Team

Lead Supervisor
- **Name:** Dr Maisem Laabei
- **Affiliation:** Bath
- **College/Faculty:** Faculty of Science
- **Department/School:** Biology & Biochemistry
- **Email Address:** ml418@bath.ac.uk

Co-Supervisor 1
- **Name:** Professor Ruth Massey
- **Affiliation:** Bristol
- **College/Faculty:** Faculty of Life Sciences
- **Department/School:** School of Cellular and Molecular Medicine

Co-Supervisor 2
- **Name:** Dr Mario Recker
- **Affiliation:** Exeter
- **College/Faculty:** College of Engineering, Mathematics and Physical Sciences
- **Department/School:** Centre for Mathematics and the Environment

Co-Supervisor 3
- **Name:** Professor Jean Van Den Elsen
- **Affiliation:** Bath
- **College/Faculty:** Faculty of Science
- **Department/School:** Biology & Biochemistry

Co-Supervisor 4
- **Name:**
- **Affiliation:**
- **College/Faculty:**
- **Department/School:**